Predicting the effect of confinement on the COVID-19 spread using machine learning enriched with satellite air pollution observations

Author:

Xing XiaofanORCID,Xiong Yuankang,Yang Ruipu,Wang RongORCID,Wang WeibingORCID,Kan Haidong,Lu Tun,Li Dongsheng,Cao Junji,Peñuelas JosepORCID,Ciais PhilippeORCID,Bauer NicoORCID,Boucher Olivier,Balkanski YvesORCID,Hauglustaine Didier,Brasseur Guy,Morawska LidiaORCID,Janssens Ivan A.,Wang Xiangrong,Sardans JordiORCID,Wang Yijing,Deng Yifei,Wang LinORCID,Chen JianminORCID,Tang Xu,Zhang RenheORCID

Abstract

The real-time monitoring of reductions of economic activity by containment measures and its effect on the transmission of the coronavirus (COVID-19) is a critical unanswered question. We inferred 5,642 weekly activity anomalies from the meteorology-adjusted differences in spaceborne tropospheric NO2 column concentrations after the 2020 COVID-19 outbreak relative to the baseline from 2016 to 2019. Two satellite observations reveal reincreasing economic activity associated with lifting control measures that comes together with accelerating COVID-19 cases before the winter of 2020/2021. Application of the near-real-time satellite NO2 observations produces a much better prediction of the deceleration of COVID-19 cases than applying the Oxford Government Response Tracker, the Public Health and Social Measures, or human mobility data as alternative predictors. A convergent cross-mapping suggests that economic activity reduction inferred from NO2 is a driver of case deceleration in most of the territories. This effect, however, is not linear, while further activity reductions were associated with weaker deceleration. Over the winter of 2020/2021, nearly 1 million daily COVID-19 cases could have been avoided by optimizing the timing and strength of activity reduction relative to a scenario based on the real distribution. Our study shows how satellite observations can provide surrogate data for activity reduction during the COVID-19 pandemic and monitor the effectiveness of containment to the pandemic before vaccines become widely available.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3