Sustainable and feasible reagent-free electro-Fenton via sequential dual-cathode electrocatalysis

Author:

Wang Jiabei,Li Shizhen,Qin Qiyue,Peng ChuangORCID

Abstract

Electro-Fenton processes aim at producing oxidizing radicals with fewer added chemicals and residues but are still unable to completely eliminate both. This study demonstrates that a reagent-free electro-Fenton process that runs solely on oxygen and electricity can be achieved by sequential dual-cathode electrocatalysis. H2O2 is produced on an electrodeposited PEDOT on carbon cloth (PEDOT/CC) cathode and subsequently converted to hydroxyl radicals on a stainless-steel–mesh cathode. The dual-cathode system demonstrates efficient decolorization and total organic carbon (TOC) removal toward organic dyes at optimized cathodic potentials of −0.9 V for PEDOT/CC and −0.8 V for the stainless-steel mesh. The sequential dual-cathode process also displays high reusability, no iron leaching, high removal efficiency using air instead of oxygen, and low installation and operation costs. This work demonstrates a preeminent and commercially viable example of pollution control rendered by the “catalysis instead of chemical reagent” philosophy of green chemistry.

Funder

Science and Technology Bureau of Shenzhen

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3