Self-interaction error overbinds water clusters but cancels in structural energy differences

Author:

Sharkas KamalORCID,Wagle KamalORCID,Santra BiswajitORCID,Akter Sharmin,Zope Rajendra R.ORCID,Baruah TunnaORCID,Jackson Koblar A.ORCID,Perdew John P.ORCID,Peralta Juan E.ORCID

Abstract

We gauge the importance of self-interaction errors in density functional approximations (DFAs) for the case of water clusters. To this end, we used the Fermi–Löwdin orbital self-interaction correction method (FLOSIC) to calculate the binding energy of clusters of up to eight water molecules. Three representative DFAs of the local, generalized gradient, and metageneralized gradient families [i.e., local density approximation (LDA), Perdew–Burke–Ernzerhof (PBE), and strongly constrained and appropriately normed (SCAN)] were used. We find that the overbinding of the water clusters in these approximations is not a density-driven error. We show that, while removing self-interaction error does not alter the energetic ordering of the different water isomers with respect to the uncorrected DFAs, the resulting binding energies are corrected toward accurate reference values from higher-level calculations. In particular, self-interaction–corrected SCAN not only retains the correct energetic ordering for water hexamers but also reduces the mean error in the hexamer binding energies to less than 14 meV/H2Ofrom about 42 meV/H2Ofor SCAN. By decomposing the total binding energy into many-body components, we find that large errors in the two-body interaction in SCAN are significantly reduced by self-interaction corrections. Higher-order many-body errors are small in both SCAN and self-interaction–corrected SCAN. These results indicate that orbital-by-orbital removal of self-interaction combined with a proper DFA can lead to improved descriptions of water complexes.

Funder

DOE | Office of Science

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3