Human influence has intensified extreme precipitation in North America

Author:

Kirchmeier-Young Megan C.ORCID,Zhang XuebinORCID

Abstract

Precipitation extremes have implications for many facets of both the human and natural systems, predominantly through flooding events. Observations have demonstrated increasing trends in extreme precipitation in North America, and models and theory consistently suggest continued increases with future warming. Here, we address the question of whether observed changes in annual maximum 1- and 5-d precipitation can be attributed to human influence on the climate. Although attribution has been demonstrated for global and hemispheric scales, there are few results for continental and subcontinental scales. We utilize three large ensembles, including simulations from both a fully coupled Earth system model and a regional climate model. We use two different attribution approaches and find many qualitatively consistent results across different methods, different models, and different regional scales. We conclude that external forcing, dominated by human influence, has contributed to the increase in frequency and intensity of regional precipitation extremes in North America. If human emissions continue to increase, North America will see further increases in these extremes.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference40 articles.

1. Water;Lall,2018

2. R. Story , “Estimate of the average annual cost for disaster financial assistance arrangements due to weather events” (Office of the Parliamentary Budget Officer, Ottawa, Canada, 2016).

3. Precipitation change in the United States;Easterling,2017

4. Investigation of the 2013 Alberta flood from weather and climate perspectives;Teufel;Clim. Dynam.,2017

5. Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change;van der Wiel;Hydrol. Earth Syst. Sci.,2017

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3