Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change

Author:

van der Wiel KarinORCID,Kapnick Sarah B.ORCID,van Oldenborgh Geert JanORCID,Whan Kirien,Philip Sjoukje,Vecchi Gabriel A.,Singh Roop K.,Arrighi JulieORCID,Cullen Heidi

Abstract

Abstract. A stationary low pressure system and elevated levels of precipitable water provided a nearly continuous source of precipitation over Louisiana, United States (US), starting around 10 August 2016. Precipitation was heaviest in the region broadly encompassing the city of Baton Rouge, with a 3-day maximum found at a station in Livingston, LA (east of Baton Rouge), from 12 to 14 August 2016 (648.3 mm, 25.5 inches). The intense precipitation was followed by inland flash flooding and river flooding and in subsequent days produced additional backwater flooding. On 16 August, Louisiana officials reported that 30 000 people had been rescued, nearly 10 600 people had slept in shelters on the night of 14 August and at least 60 600 homes had been impacted to varying degrees. As of 17 August, the floods were reported to have killed at least 13 people. As the disaster was unfolding, the Red Cross called the flooding the worst natural disaster in the US since Super Storm Sandy made landfall in New Jersey on 24 October 2012. Before the floodwaters had receded, the media began questioning whether this extreme event was caused by anthropogenic climate change. To provide the necessary analysis to understand the potential role of anthropogenic climate change, a rapid attribution analysis was launched in real time using the best readily available observational data and high-resolution global climate model simulations. The objective of this study is to show the possibility of performing rapid attribution studies when both observational and model data and analysis methods are readily available upon the start. It is the authors' aspiration that the results be used to guide further studies of the devastating precipitation and flooding event. Here, we present a first estimate of how anthropogenic climate change has affected the likelihood of a comparable extreme precipitation event in the central US Gulf Coast. While the flooding event of interest triggering this study occurred in south Louisiana, for the purposes of our analysis, we have defined an extreme precipitation event by taking the spatial maximum of annual 3-day inland maximum precipitation over the region of 29–31° N, 85–95° W, which we refer to as the central US Gulf Coast. Using observational data, we find that the observed local return time of the 12–14 August precipitation event in 2016 is about 550 years (95 % confidence interval (CI): 450–1450). The probability for an event like this to happen anywhere in the region is presently 1 in 30 years (CI 11–110). We estimate that these probabilities and the intensity of extreme precipitation events of this return time have increased since 1900. A central US Gulf Coast extreme precipitation event has effectively become more likely in 2016 than it was in 1900. The global climate models tell a similar story; in the most accurate analyses, the regional probability of 3-day extreme precipitation increases by more than a factor of 1.4 due to anthropogenic climate change. The magnitude of the shift in probabilities is greater in the 25 km (higher-resolution) climate model than in the 50 km model. The evidence for a relation to El Niño half a year earlier is equivocal, with some analyses showing a positive connection and others none.

Funder

Climate Program Office

Cordis

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference87 articles.

1. Allen, R. and Burgess, R.: LSU AgCenter predicts floods cost state at least $110 million in crop loss, The Advocate, http://www.theadvocate.com/louisiana_flood_2016/article_a7689806-6946-11e6-a681-ab59c458f55c.html?sr_source=lift_amplify, last access: 26 August 2016.

2. American Red Cross: Louisiana Flooding: Red Cross Shelters 10,000+ After Worst Disaster Since Superstorm Sandy, American Red Cross, http://www.redcross.org/news/press-release/Louisiana-Flooding-Red-Cross, last access: 23 August 2016a.

3. American Red Cross: Needs of People in Louisiana Remain Great; Red Cross Still Sheltering 7,000+, Serving Thousands of Meals, American Red Cross, http://www.redcross.org/news/press-release/Needs-of-People-in-Louisiana, last access: 23 August 2016b.

4. Broach, D.: How many houses, people flooded in Louisiana?, NOLA, http://www.nola.com/weather/index.ssf/2016/08/how_many_people_houses_were_fl.html, last access: 24 August 2016.

5. Bromwich, J. E.: Flooding in the South Looks a Lot Like Climate Change, The New York Times, http://www.nytimes.com/2016/08/17/us/climate-change-louisiana.html, last access: 24 August 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3