Author:
Polster Alexander,Nelson Benjamin R.,Olson Eric N.,Beam Kurt G.
Abstract
In skeletal muscle, conformational coupling between CaV1.1 in the plasma membrane and type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) is thought to underlie both excitation–contraction (EC) coupling Ca2+ release from the SR and retrograde coupling by which RyR1 increases the magnitude of the Ca2+ current via CaV1.1. Recent work has shown that EC coupling fails in muscle from mice and fish null for the protein Stac3 (SH3 and cysteine-rich domain 3) but did not establish the functional role of Stac3 in the CaV1.1–RyR1 interaction. We investigated this using both tsA201 cells and Stac3 KO myotubes. While confirming in tsA201 cells that Stac3 could support surface expression of CaV1.1 (coexpressed with its auxiliary β1a and α2-δ1 subunits) and the generation of large Ca2+ currents, we found that without Stac3 the auxiliary γ1 subunit also supported membrane expression of CaV1.1/β1a/α2-δ1, but that this combination generated only tiny Ca2+ currents. In Stac3 KO myotubes, there was reduced, but still substantial CaV1.1 in the plasma membrane. However, the CaV1.1 remaining in Stac3 KO myotubes did not generate appreciable Ca2+ currents or EC coupling Ca2+ release. Expression of WT Stac3 in Stac3 KO myotubes fully restored Ca2+ currents and EC coupling Ca2+ release, whereas expression of Stac3W280S (containing the Native American myopathy mutation) partially restored Ca2+ currents but only marginally restored EC coupling. We conclude that membrane trafficking of CaV1.1 is facilitated by, but does not require, Stac3, and that Stac3 is directly involved in conformational coupling between CaV1.1 and RyR1.
Funder
HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases
Muscular Dystrophy Association
HHS | NIH | National Heart, Lung, and Blood Institute
HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases
Welch Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献