Stac3 has a direct role in skeletal muscle-type excitation–contraction coupling that is disrupted by a myopathy-causing mutation

Author:

Polster Alexander,Nelson Benjamin R.,Olson Eric N.,Beam Kurt G.

Abstract

In skeletal muscle, conformational coupling between CaV1.1 in the plasma membrane and type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) is thought to underlie both excitation–contraction (EC) coupling Ca2+ release from the SR and retrograde coupling by which RyR1 increases the magnitude of the Ca2+ current via CaV1.1. Recent work has shown that EC coupling fails in muscle from mice and fish null for the protein Stac3 (SH3 and cysteine-rich domain 3) but did not establish the functional role of Stac3 in the CaV1.1–RyR1 interaction. We investigated this using both tsA201 cells and Stac3 KO myotubes. While confirming in tsA201 cells that Stac3 could support surface expression of CaV1.1 (coexpressed with its auxiliary β1a and α21 subunits) and the generation of large Ca2+ currents, we found that without Stac3 the auxiliary γ1 subunit also supported membrane expression of CaV1.1/β1a21, but that this combination generated only tiny Ca2+ currents. In Stac3 KO myotubes, there was reduced, but still substantial CaV1.1 in the plasma membrane. However, the CaV1.1 remaining in Stac3 KO myotubes did not generate appreciable Ca2+ currents or EC coupling Ca2+ release. Expression of WT Stac3 in Stac3 KO myotubes fully restored Ca2+ currents and EC coupling Ca2+ release, whereas expression of Stac3W280S (containing the Native American myopathy mutation) partially restored Ca2+ currents but only marginally restored EC coupling. We conclude that membrane trafficking of CaV1.1 is facilitated by, but does not require, Stac3, and that Stac3 is directly involved in conformational coupling between CaV1.1 and RyR1.

Funder

HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases

Muscular Dystrophy Association

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Welch Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3