Metabolic evolution and the self-organization of ecosystems

Author:

Braakman Rogier,Follows Michael J.,Chisholm Sallie W.

Abstract

Metabolism mediates the flow of matter and energy through the biosphere. We examined how metabolic evolution shapes ecosystems by reconstructing it in the globally abundant oceanic phytoplankterProchlorococcus. To understand what drove observed evolutionary patterns, we interpreted them in the context of its population dynamics, growth rate, and light adaptation, and the size and macromolecular and elemental composition of cells. This multilevel view suggests that, over the course of evolution, there was a steady increase inProchlorococcus’ metabolic rate and excretion of organic carbon. We derived a mathematical framework that suggests these adaptations lower the minimal subsistence nutrient concentration of cells, which results in a drawdown of nutrients in oceanic surface waters. This, in turn, increases total ecosystem biomass and promotes the coevolution of all cells in the ecosystem. Additional reconstructions suggest thatProchlorococcusand the dominant cooccurring heterotrophic bacterium SAR11 form a coevolved mutualism that maximizes their collective metabolic rate by recycling organic carbon through complementary excretion and uptake pathways. Moreover, the metabolic codependencies ofProchlorococcusand SAR11 are highly similar to those of chloroplasts and mitochondria within plant cells. These observations lead us to propose a general theory relating metabolic evolution to the self-amplification and self-organization of the biosphere. We discuss the implications of this framework for the evolution of Earth’s biogeochemical cycles and the rise of atmospheric oxygen.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference163 articles.

1. Schrödinger E (1944) What Is Life? The Physical Aspect of the Living Cell (Cambridge Univ Press, Cambridge, UK).

2. Morowitz HJ (1968) Energy Flow in Biology; Biological Organization as a Problem in Thermal Physics (Academic, New York).

3. TOWARD A METABOLIC THEORY OF ECOLOGY

4. The Microbial Engines That Drive Earth's Biogeochemical Cycles

5. The compositional and evolutionary logic of metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3