Giant ripples on comet 67P/Churyumov–Gerasimenko sculpted by sunset thermal wind

Author:

Jia Pan,Andreotti Bruno,Claudin Philippe

Abstract

Explaining the unexpected presence of dune-like patterns at the surface of the comet 67P/Churyumov–Gerasimenko requires conceptual and quantitative advances in the understanding of surface and outgassing processes. We show here that vapor flow emitted by the comet around its perihelion spreads laterally in a surface layer, due to the strong pressure difference between zones illuminated by sunlight and those in shadow. For such thermal winds to be dense enough to transport grains—10 times greater than previous estimates—outgassing must take place through a surface porous granular layer, and that layer must be composed of grains whose roughness lowers cohesion consistently with contact mechanics. The linear stability analysis of the problem, entirely tested against laboratory experiments, quantitatively predicts the emergence of bedforms in the observed wavelength range and their propagation at the scale of a comet revolution. Although generated by a rarefied atmosphere, they are paradoxically analogous to ripples emerging on granular beds submitted to viscous shear flows. This quantitative agreement shows that our understanding of the coupling between hydrodynamics and sediment transport is able to account for bedform emergence in extreme conditions and provides a reliable tool to predict the erosion and accretion processes controlling the evolution of small solar system bodies.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3