The Vulcan Mission to Io: Lessons Learned during the 2022 JPL Planetary Science Summer School

Author:

Hanley K. G.ORCID,McKown Q.ORCID,Cangi E. M.ORCID,Sands C.ORCID,North N.ORCID,Miklavčič P. M.ORCID,Bramble M. S.ORCID,Bretzfelder J. M.ORCID,Byron B. D.ORCID,Caggiano J.ORCID,Haber J. T.ORCID,Laham S. J.,Morrison-Fogel D.ORCID,Napier K. A.ORCID,Phillips R. F.ORCID,Ray S.ORCID,Sandford M.ORCID,Sinha P.ORCID,Hudson T.ORCID,Scully J. E. C.ORCID,Lowes L.

Abstract

Abstract A mission to Jupiter's moon Io, the most volcanically active body in the solar system, was suggested as a priority for the New Frontiers program in the 2013 Planetary Science Decadal Survey. We present a New Frontiers–class mission concept, Vulcan, that was designed as an educational exercise through the Jet Propulsion Laboratory’s 2022 Planetary Science Summer School. Vulcan would leverage an instrument suite consisting of wide- and narrow-angle cameras, a thermal infrared spectrometer, two fluxgate magnetometers, and ion and electron electrostatic analyzers to conduct the most thorough investigation of Io to date. Using 78 flybys over a 2 yr primary science mission, Vulcan would characterize the effects of tidal forces on the differentiation state, crustal structure, and volcanism of Io and investigate potential interactions between Io's volcanoes, surface features, and atmosphere. Although Vulcan was developed as an academic exercise, we show that a New Frontiers–class mission to Io could achieve transformative science in both geophysics and plasma physics, unifying typically disparate subfields of planetary science. A dedicated mission to Io, in combination with the Europa Clipper and Jupiter Icy Moons Explorer missions, would address fundamental questions raised by the 2023 Planetary Science Decadal Survey and could complete our understanding of the spectrum of planetary habitability. Lessons learned from Vulcan could be applied to a New Frontiers 5 Io mission concept in the near future.

Funder

NASA ∣ Jet Propulsion Laboratory

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3