Author:
Hurton Lenka V.,Singh Harjeet,Najjar Amer M.,Switzer Kirsten C.,Mi Tiejuan,Maiti Sourindra,Olivares Simon,Rabinovich Brian,Huls Helen,Forget Marie-Andrée,Datar Vrushali,Kebriaei Partow,Lee Dean A.,Champlin Richard E.,Cooper Laurence J. N.
Abstract
Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+T cells with preserved TSCMpotential using theSleeping Beautyplatform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.
Funder
HHS | National Institutes of Health
Cancer Center Core Grant
HHS | NIH | National Cancer Institute
Publisher
Proceedings of the National Academy of Sciences
Cited by
351 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献