CaMKII modulates sodium current in neurons from epileptic Scn2a mutant mice

Author:

Thompson Christopher H.,Hawkins Nicole A.,Kearney Jennifer A.,George Alfred L.

Abstract

Monogenic epilepsies with wide-ranging clinical severity have been associated with mutations in voltage-gated sodium channel genes. In the Scn2aQ54 mouse model of epilepsy, a focal epilepsy phenotype is caused by transgenic expression of an engineered NaV1.2 mutation displaying enhanced persistent sodium current. Seizure frequency and other phenotypic features in Scn2aQ54 mice depend on genetic background. We investigated the neurophysiological and molecular correlates of strain-dependent epilepsy severity in this model. Scn2aQ54 mice on the C57BL/6J background (B6.Q54) exhibit a mild disorder, whereas animals intercrossed with SJL/J mice (F1.Q54) have a severe phenotype. Whole-cell recording revealed that hippocampal pyramidal neurons from B6.Q54 and F1.Q54 animals exhibit spontaneous action potentials, but F1.Q54 neurons exhibited higher firing frequency and greater evoked activity compared with B6.Q54 neurons. These findings correlated with larger persistent sodium current and depolarized inactivation in neurons from F1.Q54 animals. Because calcium/calmodulin protein kinase II (CaMKII) is known to modify persistent current and channel inactivation in the heart, we investigated CaMKII as a plausible modulator of neuronal sodium channels. CaMKII activity in hippocampal protein lysates exhibited a strain-dependence in Scn2aQ54 mice with higher activity in F1.Q54 animals. Heterologously expressed NaV1.2 channels exposed to activated CaMKII had enhanced persistent current and depolarized channel inactivation resembling the properties of F1.Q54 neuronal sodium channels. By contrast, inhibition of CaMKII attenuated persistent current, evoked a hyperpolarized channel inactivation, and suppressed neuronal excitability. We conclude that CaMKII-mediated modulation of neuronal sodium current impacts neuronal excitability in Scn2aQ54 mice and may represent a therapeutic target for the treatment of epilepsy.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Epilepsy Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3