Dysfunctional sodium channel kinetics as a novel epilepsy mechanism in chromosome 15q11‐q13 duplication syndrome

Author:

Elamin Marwa1ORCID,Lemtiri‐Chlieh Fouad1,Robinson Tiwanna M.1,Levine Eric S.1ORCID

Affiliation:

1. Department of Neuroscience, School of Medicine University of Connecticut Farmington Connecticut USA

Abstract

AbstractObjectiveDuplication of the maternal chromosome 15q11.2‐q13.1 region causes Dup15q syndrome, a highly penetrant neurodevelopmental disorder characterized by severe autism and refractory seizures. Although UBE3A, the gene encoding the ubiquitin ligase E3A, is thought to be the main driver of disease phenotypes, the cellular and molecular mechanisms that contribute to the development of the syndrome are yet to be determined. We previously established the necessity of UBE3A overexpression for the development of cellular phenotypes in human Dup15q neurons, including increased action potential firing and increased inward current density, which prompted us to further investigate sodium channel kinetics.MethodsWe used a Dup15q patient‐derived induced pluripotent stem cell line that was CRISPR‐edited to remove the supernumerary chromosome and create an isogenic control line. We performed whole cell patch clamp electrophysiology on Dup15q and corrected control neurons at two time points of in vitro development.ResultsCompared to corrected neurons, Dup15q neurons showed increased sodium current density and a depolarizing shift in steady‐state inactivation. Moreover, onset of slow inactivation was delayed, and a faster recovery from both fast and slow inactivation processes was observed in Dup15q neurons. A fraction of sodium current in Dup15q neurons (~15%) appeared to be resistant to slow inactivation. Not unexpectedly, a higher fraction of persistent sodium current was also observed in Dup15q neurons. These phenotypes were modulated by the anticonvulsant drug rufinamide.SignificanceSodium channels play a crucial role in the generation of action potentials, and sodium channelopathies have been uncovered in multiple forms of epilepsy. For the first time, our work identifies in Dup15q neurons dysfunctional inactivation kinetics, which have been previously linked to multiple forms of epilepsy. Our work can also guide therapeutic approaches to epileptic seizures in Dup15q patients and emphasize the role of drugs that modulate inactivation kinetics, such as rufinamide.

Funder

Schlumberger Foundation

National Institutes of Health

Publisher

Wiley

Subject

Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3