Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice

Author:

Schnermann Jurgen,Chou Chung-Lin,Ma Tonghui,Traynor Timothy,Knepper Mark A.,Verkman A. S.

Abstract

To investigate the role of aquaporin-1 (AQP1) water channels in proximal tubule function,in vitroproximal tubule microperfusion andin vivomicropuncture measurements were done on AQP1 knockout mice. The knockout mice were generated by targeted gene disruption and found previously to be unable to concentrate their urine in response to water deprivation. Unanesthetized knockout mice consumed 2.8-fold more fluid than wild-type mice and had lower urine osmolality (505 ± 40 vs. 1081 ± 68 milliosmolar). Transepithelial osmotic water permeability (Pf) in isolated microperfused S2 segments of proximal tubule from AQP1 knockout [−/−] mice was 0.033 ± 0.005 cm/s (SE,n= 6 mice, 37°C), much lower than that of 0.15 ± 0.03 cm/s (n= 8) in tubules from wild-type [+/+] mice (P< 0.01). In the presence of isosmolar luminal perfusate and bath solutions, spontaneous fluid absorption rates (nl/min/mm tubule length) were 0.31 ± 0.12 (−/−,n= 5) and 0.64 ± 0.15 (+/+,n= 8). As determined by free-flow micropuncture, the ratios of tubular fluid-to-plasma concentrations of an impermeant marker TF/P in end proximal tubule fluid were 1.36 ± 0.05 (−/−,n= 8 mice [53 tubules]) and 1.95 ± 0.09 (+/+,n= 7 mice [40 tubules]) (P< 0.001), corresponding to 26 ± 3% [−/−] and 48 ± 2% [+/+] absorption of the filtered fluid load. In collections of distal tubule fluid, TF/P were 2.8 ± 0.3 [−/−] and 4.4 ± 0.5 [+/+], corresponding to 62 ± 4% [−/−] and 76 ± 3% [+/+] absorption (P< 0.02). These data indicate that AQP1 deletion in mice results in decreased transepithelial proximal tubule water permeability and defective fluid absorption. Thus, the high water permeability in proximal tubule of wild-type mice is primarily transcellular, mediated by AQP1 water channels, and required for efficient near-isosmolar fluid absorption.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 395 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3