Preparation of functionally active cell-permeable peptides by single-step ligation of two peptide modules

Author:

Zhang Lianshan,Torgerson Troy R.,Liu Xue-Yan,Timmons Sheila,Colosia Ann D.,Hawiger Jacek,Tam James P.

Abstract

Noninvasive cellular import of synthetic peptides can be accomplished by incorporating a hydrophobic, membrane-permeable sequence (MPS). Herein, we describe a facile method that expedites synthesis of biologically active, cell-permeable peptides by site-specific ligation of two free peptide modules: one bearing a functional sequence and the second bearing a MPS. A nonpeptide thiazolidino linkage between the two modules is produced by ligation of the COOH-terminal aldehyde on the MPS and the NH2-terminal 1,2-amino thiol moiety on the functional sequence. This thiazolidine ligation approach is performed with stoichiometric amounts of fully unprotected MPS and functional peptide in an aqueous buffered solution, eliminating the need for additional chemical manipulation and purification prior to use in bioassays. Two different MPSs were interchangeably combined with two different functional sequences to generate two sets of hybrid peptides. One set of hybrid peptides, carrying the cytoplasmic cell adhesion regulatory domain of the human integrin β3, inhibited adhesion of human erythroleukemia cells to fibrinogen-coated surfaces. A second set of hybrid peptides, carrying the nuclear localization sequence of the transcription factor NF-κB, inhibited nuclear import of transcription factors NF-κB, activator protein 1, and nuclear factor of activated T cells in agonist-stimulated Jurkat T lymphocytes. In each assay, these nonamide bond hybrids were found to be functionally comparable to peptides prepared by the conventional method. Cumulatively, this new ligation approach provides an easy and rapid method for engineering of functional, cell-permeable peptides and demonstrates the potential for synthesis of cell-permeable peptide libraries designed to block intracellular protein–protein interactions.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3