Bifunctional amyloid-reactive peptide promotes binding of antibody 11-1F4 to diverse amyloid types and enhances therapeutic efficacy

Author:

Wall Jonathan S.ORCID,Williams Angela D.,Foster James S.,Richey Tina,Stuckey Alan,Macy Sallie,Wooliver Craig,Campagna Shawn R.,Tague Eric D.,Farmer Abigail T.,Lands Ronald H.,Martin Emily B.ORCID,Heidel R. Eric,Kennel Stephen J.

Abstract

Amyloidosis is a malignant pathology associated with the formation of proteinaceous amyloid fibrils that deposit in organs and tissues, leading to dysfunction and severe morbidity. More than 25 proteins have been identified as components of amyloid, but the most common form of systemic amyloidosis is associated with the deposition of amyloid composed of Ig light chains (AL). Clinical management of amyloidosis focuses on reducing synthesis of the amyloid precursor protein. However, recently, passive immunotherapy using amyloid fibril-reactive antibodies, such as 11-1F4, to remove amyloid from organs has been shown to be effective at restoring organ function in patients with AL amyloidosis. However, 11-1F4 does not bind amyloid in all AL patients, as evidenced by PET/CT imaging, nor does it efficiently bind the many other forms of amyloid. To enhance the reactivity and expand the utility of the 11-1F4 mAb as an amyloid immunotherapeutic, we have developed a pretargeting “peptope” comprising a multiamyloid-reactive peptide, p5+14, fused to a high-affinity peptide epitope recognized by 11-1F4. The peptope, known as p66, bound the 11-1F4 mAb in vitro with subnanomolar efficiency, exhibited multiamyloid reactivity in vitro and, using tissue biodistribution and SPECT imaging, colocalized with amyloid deposits in a mouse model of systemic serum amyloid A amyloidosis. Pretreatment with the peptope induced 11-1F4 mAb accumulation in serum amyloid A deposits in vivo and enhanced 11-1F4–mediated dissolution of a human AL amyloid extract implanted in mice.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3