Why large icosahedral viruses need scaffolding proteins

Author:

Li SiyuORCID,Roy Polly,Travesset Alex,Zandi Roya

Abstract

While small single-stranded viral shells encapsidate their genome spontaneously, many large viruses, such as the herpes simplex virus or infectious bursal disease virus (IBDV), typically require a template, consisting of either scaffolding proteins or an inner core. Despite the proliferation of large viruses in nature, the mechanisms by which hundreds or thousands of proteins assemble to form structures with icosahedral order (IO) is completely unknown. Using continuum elasticity theory, we study the growth of large viral shells (capsids) and show that a nonspecific template not only selects the radius of the capsid, but also leads to the error-free assembly of protein subunits into capsids with universal IO. We prove that as a spherical cap grows, there is a deep potential well at the locations of disclinations that later in the assembly process will become the vertices of an icosahedron. Furthermore, we introduce a minimal model and simulate the assembly of a viral shell around a template under nonequilibrium conditions and find a perfect match between the results of continuum elasticity theory and the numerical simulations. Besides explaining available experimental results, we provide a number of predictions. Implications for other problems in spherical crystals are also discussed.

Funder

National Science Foundation

Senior Investigator Award, Welcome Trust

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference44 articles.

1. Physical Principles in the Construction of Regular Viruses

2. Physics of RNA and viral assembly;Bruinsma;Euro Phys J E,2006

3. Emergent complexity from simple anisotropic building blocks: Shells, tubes, and spirals;Fejer;Nano Lett,2010

4. Self-assembly of polyhedral shells: A molecular dynamics study;Rapaport;Phys Rev E,2004

5. Viral genome structures are optimal for capsid assembly

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3