Switchable Conformation in Protein Subunits: Unveiling Assembly Dynamics of Icosahedral Viruses

Author:

Li Siyu,Tresset Guillaume,Zandi RoyaORCID

Abstract

The packaging of genetic material within a protein shell, called the capsid, marks a pivotal step in the life cycle of numerous single-stranded RNA viruses. Understanding how hundreds, or even thousands, of proteins assemble around the genome to form highly symmetrical structures remains an unresolved puzzle. In this paper, we design novel subunits and develop a model that enables us to explore the assembly pathways and genome packaging mechanism of icosahedral viruses, which were previously inaccessible. Using molecular dynamics (MD) simulations, we observe capsid fragments, varying in protein number and morphology, assembling at different locations along the genome. Initially, these fragments create a disordered structure that later merges to form a perfect symmetric capsid. The model demonstrates remarkable strength in addressing numerous unresolved issues surrounding virus assembly. For instance, it enables us to explore the advantages of RNA packaging by capsid proteins over linear polymers. Our MD simulations are in excellent agreement with our experimental findings from small-angle X-ray scattering and cryo-transmission electron microscopy, carefully analyzing the assembly products of viral capsid proteins around RNAs with distinct topologies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3