Many-body effect determines the selectivity for Ca2+ and Mg2+ in proteins

Author:

Jing ZhifengORCID,Liu Chengwen,Qi Rui,Ren Pengyu

Abstract

Calcium ion is a versatile messenger in many cell-signaling processes. To achieve their functions, calcium-binding proteins selectively bind Ca2+ against a background of competing ions such as Mg2+. The high specificity of calcium-binding proteins has been intriguing since Mg2+ has a higher charge density than Ca2+ and is expected to bind more tightly to the carboxylate groups in calcium-binding pockets. Here, we showed that the specificity for Ca2+ is dictated by the many-body polarization effect, which is an energetic cost arising from the dense packing of multiple residues around the metal ion. Since polarization has stronger distance dependence compared with permanent electrostatics, the cost associated with the smaller Mg2+ is much higher than that with Ca2+ and outweighs the electrostatic attraction favorable for Mg2+. With the AMOEBA (atomic multipole optimized energetics for biomolecular simulation) polarizable force field, our simulations captured the relative binding free energy between Ca2+ and Mg2+ for proteins with various types of binding pockets and explained the nonmonotonic size dependence of the binding free energy in EF-hand proteins. Without electronic polarization, the smaller ions are always favored over larger ions and the relative binding free energy is roughly proportional to the net charge of the pocket. The many-body effect depends on both the number and the arrangement of charged residues. Fine-tuning of the ion selectivity could be achieved by combining the many-body effect and geometric constraint.

Funder

Foundation for the National Institutes of Health

Welch Foundation

Cancer Prevention and Research Institute of Texas

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3