Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119

Author:

Liu ZhuoORCID,Lemmonds Sara,Huang Juan,Tyagi Madhusudan,Hong Liang,Jain Nitin

Abstract

The enhanced thermostability of thermophilic proteins with respect to their mesophilic counterparts is often attributed to the enthalpy effect, arising from strong interactions between protein residues. Intuitively, these strong interresidue interactions will rigidify the biomolecules. However, the present work utilizing neutron scattering and solution NMR spectroscopy measurements demonstrates a contrary example that the thermophilic cytochrome P450, CYP119, is much more flexible than its mesophilic counterpart, CYP101A1, something which is not apparent just from structural comparison of the two proteins. A mechanism to explain this apparent contradiction is that higher flexibility in the folded state of CYP119 increases its conformational entropy and thereby reduces the entropy gain during denaturation, which will increase the free energy needed for unfolding and thus stabilize the protein. This scenario is supported by thermodynamic data on the temperature dependence of unfolding free energy, which shows a significant entropic contribution to the thermostability of CYP119 and lends an added dimension to enhanced stability, previously attributed only to presence of aromatic stacking interactions and salt bridge networks. Our experimental data also support the notion that highly thermophilic P450s such as CYP119 may use a mechanism that partitions flexibility differently from mesophilic P450s between ligand binding and thermal stability.

Funder

NSF China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3