Gating charge displacement in a monomeric voltage-gated proton (Hv1) channel

Author:

Carmona Emerson M.,Larsson H. PeterORCID,Neely Alan,Alvarez OsvaldoORCID,Latorre Ramon,Gonzalez Carlos

Abstract

The voltage-gated proton (Hv1) channel, a voltage sensor and a conductive pore contained in one structural module, plays important roles in many physiological processes. Voltage sensor movements can be directly detected by measuring gating currents, and a detailed characterization of Hv1 charge displacements during channel activation can help to understand the function of this channel. We succeeded in detecting gating currents in the monomeric form of the Ciona-Hv1 channel. To decrease proton currents and better separate gating currents from ion currents, we used the low-conducting Hv1 mutant N264R. Isolated ON-gating currents decayed at increasing rates with increasing membrane depolarization, and the amount of gating charges displaced saturates at high voltages. These are two hallmarks of currents arising from the movement of charged elements within the boundaries of the cell membrane. The kinetic analysis of gating currents revealed a complex time course of the ON-gating current characterized by two peaks and a marked Cole–Moore effect. Both features argue that the voltage sensor undergoes several voltage-dependent conformational changes during activation. However, most of the charge is displaced in a single central transition. Upon voltage sensor activation, the charge is trapped, and only a fast component that carries a small percentage of the total charge is observed in the OFF. We hypothesize that trapping is due to the presence of the arginine side chain in position 264, which acts as a blocking ion. We conclude that the movement of the voltage sensor must proceed through at least five states to account for our experimental data satisfactorily.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

MINEDUC | Comisión Nacional de Investigación Científica y Tecnológica

DOD | USAF | AFMC | Air Force Office of Scientific Research

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interior pH-sensing residue of human voltage-gated proton channel Hv1 is histidine 168;Biophysical Journal;2024-07

2. Trp207 regulation of voltage-dependent activation of human Hv1 proton channel;Journal of Biological Chemistry;2024-03

3. Trapping Charge Mechanism in Hv1 Channels (CiHv1);International Journal of Molecular Sciences;2023-12-28

4. Mechanosensitive aquaporins;Biophysical Reviews;2023-07-17

5. Fifty years of gating currents and channel gating;Journal of General Physiology;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3