Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling

Author:

Yao WeiORCID,Wang Eryin,Bao Changhua,Zhang Yiou,Zhang Kenan,Bao Kejie,Chan Chun Kai,Chen Chaoyu,Avila Jose,Asensio Maria C.,Zhu Junyi,Zhou ShuyunORCID

Abstract

The interlayer coupling can be used to engineer the electronic structure of van der Waals heterostructures (superlattices) to obtain properties that are not possible in a single material. So far research in heterostructures has been focused on commensurate superlattices with a long-ranged Moiré period. Incommensurate heterostructures with rotational symmetry but not translational symmetry (in analogy to quasicrystals) are not only rare in nature, but also the interlayer interaction has often been assumed to be negligible due to the lack of phase coherence. Here we report the successful growth of quasicrystalline 30° twisted bilayer graphene (30°-tBLG), which is stabilized by the Pt(111) substrate, and reveal its electronic structure. The 30°-tBLG is confirmed by low energy electron diffraction and the intervalley double-resonance Raman mode at 1383 cm−1. Moreover, the emergence of mirrored Dirac cones inside the Brillouin zone of each graphene layer and a gap opening at the zone boundary suggest that these two graphene layers are coupled via a generalized Umklapp scattering mechanism—that is, scattering of a Dirac cone in one graphene layer by the reciprocal lattice vector of the other graphene layer. Our work highlights the important role of interlayer coupling in incommensurate quasicrystalline superlattices, thereby extending band structure engineering to incommensurate superstructures.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People’s Republic of China

Ministry of Science and Technology of the Peopleʾs Republic of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3