Abstract
Abstract
The Moiré superlattice formed by twisting two-dimensional materials at a certain angle has become an exciting platform for studying new properties of two-dimensional materials. Due to the introduction of new periodic potentials, Moiré superlattices can generate a series of exotic physical phenomena, for instance, Moiré excitons, unconventional superconductivity, topological phase transitions, and so on. Non-destructive characterization methods such as spectroscopic characterization and microscopy techniques are powerful tools for investigating the structural and electronic properties of Moiré superlattices. This review tries to provide a comprehensive introduction to typical spectroscopic methods such as Raman spectroscopy, photoluminescence spectroscopy, angle-resolved photoemission spectroscopy, and the contributions of microscopy techniques such as scanning near-field optical microscopy in characterizations of Moiré superlattices. We summarize the latest progress made in the field of Moiré superlattices with the help of these techniques and discuss the advantages of different characterization methods.
Funder
National Natural Science Foundation of China