Interferometric imaging of nonlocal electromechanical power transduction in ferroelectric domains

Author:

Zheng Lu,Dong Hui,Wu Xiaoyu,Huang Yen-Lin,Wang Wenbo,Wu Weida,Wang Zheng,Lai Keji

Abstract

The electrical generation and detection of elastic waves are the foundation for acoustoelectronic and acoustooptic systems. For surface acoustic wave devices, microelectromechanical/nanoelectromechanical systems, and phononic crystals, tailoring the spatial variation of material properties such as piezoelectric and elastic tensors may bring significant improvements to the system performance. Due to the much slower speed of sound than speed of light in solids, it is desirable to study various electroacoustic behaviors at the mesoscopic length scale. In this work, we demonstrate the interferometric imaging of electromechanical power transduction in ferroelectric lithium niobate domain structures by microwave impedance microscopy. In sharp contrast to the traditional standing-wave patterns caused by the superposition of counterpropagating waves, the constructive and destructive fringes in microwave dissipation images exhibit an intriguing one-wavelength periodicity. We show that such unusual interference patterns, which are fundamentally different from the acoustic displacement fields, stem from the nonlocal interaction between electric fields and elastic waves. The results are corroborated by numerical simulations taking into account the sign reversal of piezoelectric tensor in oppositely polarized domains. Our work paves ways to probe nanoscale electroacoustic phenomena in complex structures by near-field electromagnetic imaging.

Funder

NSF | MPS | Division of Materials Research

David and Lucile Packard Foundation

DOD | United States Army | RDECOM | Army Research Office

DOE | SC | Basic Energy Sciences

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universal signal scaling in microwave impedance microscopy;Applied Physics Letters;2022-09-19

2. Unveiling Alternating Current Electronic Properties at Ferroelectric Domain Walls;Advanced Electronic Materials;2021-12-30

3. Microwave impedance microscopy and its application to quantum materials;Nature Reviews Physics;2021-11-24

4. Research on power system line vulnerability analysis and quantitative assessment under blind attack;2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA);2021-01

5. Revival and Expansion of the Theory of Coherent Lattices;Physical Review Letters;2020-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3