Author:
Minajigi Anand,Francklyn Christopher S.
Abstract
Aminoacyl-tRNA synthetases (aaRSs) join amino acids to 1 of 2 terminal hydroxyl groups of their cognate tRNAs, thereby contributing to the overall fidelity of protein synthesis. In class II histidyl-tRNA synthetase (HisRS) the nonbridgingSp-oxygen of the adenylate is a potential general base for aminoacyl transfer. To test for conservation of this mechanism in other aaRSs and the role of terminal hydroxyls of tRNA in aminoacyl transfer, we investigated the class IIEscherichia colithreonyl-tRNA synthetase (ThrRS). As with other class II aaRSs, the rate-determining step for ThrRS is amino acid activation. In ThrRS, however, the 2′-OH of A76 of tRNAThrand a conserved active-site histidine (His-309) collaborate to catalyze aminoacyl transfer by a mechanism distinct from HisRS. Conserved residues in the ThrRS active site were replaced with alanine, and then the resulting mutant proteins were analyzed by steady-state and rapid kinetics. Nearly all mutants preferentially affected the amino acid activation step, with only a modest effect on aminoacyl transfer. By contrast, H309A ThrRS decreased transfer 242-fold and imposed a kinetic block to CCA accommodation. His-309 hydrogen bonds to the 2′-OH of A76, and substitution of the latter by hydrogen or fluorine decreased aminoacyl transfer by 763- and 94-fold, respectively. The proton relay mechanism suggested by these data to promote aminoacylation is reminiscent of the NAD+-dependent mechanisms of alcohol dehydrogenases and sirtuins and the RNA-mediated catalysis of the ribosomal peptidyl transferase center.
Publisher
Proceedings of the National Academy of Sciences
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献