Abstract
The response of forests to climate change depends in part on whether the photosynthetic benefit from increased atmospheric CO2(∆Ca= future minus historic CO2) compensates for increased physiological stresses from higher temperature (∆T). We predicted the outcome of these competing responses by using optimization theory and a mechanistic model of tree water transport and photosynthesis. We simulated current and future productivity, stress, and mortality in mature monospecific stands with soil, species, and climate sampled from 20 continental US locations. We modeled stands with and without acclimation to ∆Caand ∆T, where acclimated forests adjusted leaf area, photosynthetic capacity, and stand density to maximize productivity while avoiding stress. Without acclimation, the ∆Ca-driven boost in net primary productivity (NPP) was compromised by ∆T-driven stress and mortality associated with vascular failure. With acclimation, the ∆Ca-driven boost in NPP and stand biomass (C storage) was accentuated for cooler futures but negated for warmer futures by a ∆T-driven reduction in NPP and biomass. Thus, hotter futures reduced forest biomass through either mortality or acclimation. Forest outcomes depended on whether projected climatic ∆Ca/∆T ratios were above or below physiological thresholds that neutralized the negative impacts of warming. Critically, if forests do not acclimate, the ∆Ca/∆T must be aboveca. 89 ppm⋅°C−1to avoid chronic stress, a threshold met by 55% of climate projections. If forests do acclimate, the ∆Ca/∆T must rise aboveca. 67 ppm⋅°C−1for NPP and biomass to increase, a lower threshold met by 71% of projections.
Funder
National Science Foundation
USDA | National Institute of Food and Agriculture
Publisher
Proceedings of the National Academy of Sciences
Reference109 articles.
1. IPCC , Global warming of 1.5 °C: An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, V. Masson-Delmotte ., Eds. (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2018).
2. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration;Dusenge;New Phytol.,2019
3. What have we learned from 15 years of free‐air CO
2
enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO
2
4. Ecological Lessons from Free-Air CO2 Enrichment (FACE) Experiments
5. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献