Constructing artificial respiratory chain in polymer compartments: Insights into the interplay betweenbo3oxidase and the membrane

Author:

Marušič NikaORCID,Otrin LadoORCID,Zhao ZiliangORCID,Lira Rafael B.ORCID,Kyrilis Fotis L.ORCID,Hamdi FarzadORCID,Kastritis Panagiotis L.ORCID,Vidaković-Koch TanjaORCID,Ivanov IvanORCID,Sundmacher KaiORCID,Dimova RumianaORCID

Abstract

Cytochromebo3ubiquinol oxidase is a transmembrane protein, which oxidizes ubiquinone and reduces oxygen, while pumping protons. Apart from its combination with F1Fo-ATPase to assemble a minimal ATP regeneration module, the utility of the proton pump can be extended to other applications in the context of synthetic cells such as transport, signaling, and control of enzymatic reactions. In parallel, polymers have been speculated to be phospholipid mimics with respect to their ability to self-assemble in compartments with increased stability. However, their usability as interfaces for complex membrane proteins has remained questionable. In the present work, we optimized a fusion/electroformation approach to reconstitutebo3oxidase in giant unilamellar vesicles made of PDMS-g-PEO and/or phosphatidylcholine (PC). This enabled optical access, while microfluidic trapping allowed for online analysis of individual vesicles. The tight polymer membranes and the inward oriented enzyme caused 1 pH unit difference in 30 min, with an initial rate of 0.35 pH·min−1. To understand the interplay in these composite systems, we studied the relevant mechanical and rheological membrane properties. Remarkably, the proton permeability of polymer/lipid hybrids decreased after protein insertion, while the latter also led to a 20% increase of the polymer diffusion coefficient in polymersomes. In addition, PDMS-g-PEO increased the activity lifetime and the resistance to free radicals. These advantageous properties may open diverse applications, ranging from cell-free biotechnology to biomedicine. Furthermore, the presented study serves as a comprehensive road map for studying the interactions between membrane proteins and synthetic membranes, which will be fundamental for the successful engineering of such hybrid systems.

Funder

Bundesministerium für Bildung und Forschung

Max-Planck-Gesellschaft

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3