Representations of common event structure in medial temporal lobe and frontoparietal cortex support efficient inference

Author:

Morton Neal WORCID,Schlichting Margaret L.ORCID,Preston Alison R.

Abstract

Prior work has shown that the brain represents memories within a cognitive map that supports inference about connections between individual related events. Real-world adaptive behavior is also supported by recognizing common structure among numerous distinct contexts; for example, based on prior experience with restaurants, when visiting a new restaurant one can expect to first get a table, then order, eat, and finally pay the bill. We used a neurocomputational approach to examine how the brain extracts and uses abstract representations of common structure to support novel decisions. Participants learned image pairs (AB, BC) drawn from distinct triads (ABC) that shared the same internal structure and were then tested on their ability to infer indirect (AC) associations. We found that hippocampal and frontoparietal regions formed abstract representations that coded cross-triad relationships with a common geometric structure. Critically, such common representational geometries were formed despite the lack of explicit reinforcement to do so. Furthermore, we found that representations in parahippocampal cortex are hierarchical, reflecting both cross-triad relationships and distinctions between triads. We propose that representations with common geometric structure provide a vector space that codes inferred item relationships with a direction vector that is consistent across triads, thus supporting faster inference. Using computational modeling of response time data, we found evidence for dissociable vector-based retrieval and pattern-completion processes that contribute to successful inference. Moreover, we found evidence that these processes are mediated by distinct regions, with pattern completion supported by hippocampus and vector-based retrieval supported by parahippocampal cortex and lateral parietal cortex.

Funder

HHS | NIH | National Institute of Mental Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3