Distinct hippocampal mechanisms support concept formation and updating

Author:

Mack Michael L.ORCID,Love Bradley C.ORCID,Preston Alison R.

Abstract

AbstractLearning systems must constantly decide whether to create new representations or update existing ones. For example, a child learning that a bat is a mammal and not a bird would be best served by creating a new representation, whereas updating may be best when encountering a second similar bat. Characterizing the neural dynamics that underlie these complementary memory operations requires identifying the exact moments when each operation occurs. We address this challenge by interrogating fMRI brain activation with a computational learning model that predicts trial-by-trial when memories are created versus updated. We found distinct neural engagement in anterior hippocampus and ventral striatum for model-predicted memory create and update events during early learning. Notably, the degree of this effect in hippocampus, but not ventral striatum, significantly related to learning outcome. Hippocampus additionally showed distinct patterns of functional coactivation with ventromedial prefrontal cortex and angular gyrus during memory creation and premotor cortex during memory updating. These findings suggest that complementary memory functions, as formalized in computational learning models, underlie the rapid formation of novel conceptual knowledge, with the hippocampus and its interactions with frontoparietal circuits playing a crucial role in successful learning.Significance statementHow do we reconcile new experiences with existing knowledge? Prominent theories suggest that novel information is either captured by creating new memories or leveraged to update existing memories, yet empirical support of how these distinct memory operations unfold during learning is limited. Here, we combine computational modeling of human learning behaviour with functional neuroimaging to identify moments of memory formation and updating and characterize their neural signatures. We find that both hippocampus and ventral striatum are distinctly engaged when memories are created versus updated; however, it is only hippocampus activation that is associated with learning outcomes. Our findings motivate a key theoretical revision that positions hippocampus is a key player in building organized memories from the earliest moments of learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3