Abstract
Four decades ago, it was identified that muramyl dipeptide (MDP), a peptidoglycan-derived bacterial cell wall component, could display immunosuppressive functions in animals through mechanisms that remain unexplored. We sought to revisit these pioneering observations because mutations in NOD2, the gene encoding the host sensor of MDP, are associated with increased risk of developing the inflammatory bowel disease Crohn’s disease, thus suggesting that the loss of the immunomodulatory functions of NOD2 could contribute to the development of inflammatory disease. Here, we demonstrate that intraperitoneal (i.p.) administration of MDP triggered regulatory T cells and the accumulation of a population of tolerogenic CD103+ dendritic cells (DCs) in the spleen. This was found to occur not through direct sensing of MDP by DCs themselves, but rather via the production of the cytokine GM-CSF, another factor with an established regulatory role in Crohn’s disease pathogenesis. Moreover, we demonstrate that populations of CD103-expressing DCs in the gut lamina propria are enhanced by the activation of NOD2, indicating that MDP sensing plays a critical role in shaping the immune response to intestinal antigens by promoting a tolerogenic environment via manipulation of DC populations.
Funder
Gouvernement du Canada | Canadian Institutes of Health Research
Publisher
Proceedings of the National Academy of Sciences
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献