Structural basis for ligand binding to an enzyme by a conformational selection pathway

Author:

Kovermann Michael,Grundström Christin,Sauer-Eriksson A. Elisabeth,Sauer Uwe H.,Wolf-Watz Magnus

Abstract

Proteins can bind target molecules through either induced fit or conformational selection pathways. In the conformational selection model, a protein samples a scarcely populated high-energy state that resembles a target-bound conformation. In enzymatic catalysis, such high-energy states have been identified as crucial entities for activity and the dynamic interconversion between ground states and high-energy states can constitute the rate-limiting step for catalytic turnover. The transient nature of these states has precluded direct observation of their properties. Here, we present a molecular description of a high-energy enzyme state in a conformational selection pathway by an experimental strategy centered on NMR spectroscopy, protein engineering, and X-ray crystallography. Through the introduction of a disulfide bond, we succeeded in arresting the enzyme adenylate kinase in a closed high-energy conformation that is on-pathway for catalysis. A 1.9-Å X-ray structure of the arrested enzyme in complex with a transition state analog shows that catalytic sidechains are properly aligned for catalysis. We discovered that the structural sampling of the substrate free enzyme corresponds to the complete amplitude that is associated with formation of the closed and catalytically active state. In addition, we found that the trapped high-energy state displayed improved ligand binding affinity, compared with the wild-type enzyme, demonstrating that substrate binding to the high-energy state is not occluded by steric hindrance. Finally, we show that quenching of fast time scale motions observed upon ligand binding to adenylate kinase is dominated by enzyme–substrate interactions and not by intramolecular interactions resulting from the conformational change.

Funder

Deutsche Forschungsgemeinschaft

Vetenskapsrådet

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3