Predicting binding events in very flexible, allosteric, multi-domain proteins

Author:

Basciu AndreaORCID,Athar MohdORCID,Kurt HanORCID,Neville Christine,Malloci GiulianoORCID,Muredda Fabrizio C.,Bosin AndreaORCID,Ruggerone PaoloORCID,Bonvin Alexandre M. J. J.ORCID,Vargiu Attilio V.ORCID

Abstract

AbstractKnowledge of the structures formed by proteins and small ligands is of fundamental importance for understanding molecular principles of chemotherapy and for designing new and more effective drugs. Due to the still high costs and to the several limitations of experimental techniques, it is most often desirable to predict these ligand-protein complexesin silico, particularly when screening for new putative drugs from databases of millions of compounds. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology aimed at generating bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites. Validation was performed on the enzyme adenylate kinase (ADK), a paradigmatic example of proteins that undergo very large conformational changes upon ligand binding. By only exploiting the unbound structure and the putative binding sites of the protein, we generated a significant fraction of bound-like structures, which employed in ensemble-docking calculations allowed to find native-like poses of substrates, inhibitors, and catalytically incompetent binders. Our protocol provides a general framework for the generation of bound-like conformations of flexible proteins that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein’s activity. We foresee applications in virtual screening for difficult targets, prediction of the impact of amino acid mutations on structure and dynamics, and protein engineering.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3