Evolutionary radiation of lanthipeptides in marine cyanobacteria

Author:

Cubillos-Ruiz Andres,Berta-Thompson Jessie W.,Becker Jamie W.,van der Donk Wilfred A.,Chisholm Sallie W.

Abstract

Lanthipeptides are ribosomally derived peptide secondary metabolites that undergo extensive posttranslational modification. Prochlorosins are a group of lanthipeptides produced by certain strains of the ubiquitous marine picocyanobacteriaProchlorococcusandSynechococcus. Unlike other lanthipeptide-producing bacteria, picocyanobacteria use an unprecedented mechanism of substrate promiscuity for the production of numerous and diverse lanthipeptides using a single lanthionine synthetase. Through a cross-scale analysis of prochlorosin biosynthesis genes—from genomes to oceanic populations—we show that marine picocyanobacteria have the collective capacity to encode thousands of different cyclic peptides, few of which would display similar ring topologies. To understand how this extensive structural diversity arises, we used deep sequencing of wild populations to reveal genetic variation patterns in prochlorosin genes. We present evidence that structural variability among prochlorosins is the result of a diversifying selection process that favors large, rather than small, sequence changes in the precursor peptide genes. This mode of molecular evolution disregards any conservation of the ancestral structure and enables the emergence of extensively different cyclic peptides through short mutational paths based on indels. Contrary to its fast-evolving peptide substrates, the prochlorosin lanthionine synthetase evolves under a strong purifying selection, indicating that the diversification of prochlorosins is not constrained by commensurate changes in the biosynthetic enzyme. This evolutionary interplay between the prochlorosin peptide substrates and the lanthionine synthetase suggests that structure diversification, rather than structure refinement, is the driving force behind the creation of new prochlorosin structures and represents an intriguing mechanism by which natural product diversity arises.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Simons Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3