Manipulation of coacervate droplets with an electric field

Author:

Agrawal Aman1ORCID,Douglas Jack F.2ORCID,Tirrell Matthew3ORCID,Karim Alamgir1ORCID

Affiliation:

1. William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204

2. Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899

3. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637

Abstract

Many biopolymers are highly charged, and as in the case of many polymer mixtures, they tend to phase separate as a natural consequence of chain connectivity and an associated relatively low entropy of polymer mixing. Recently, it has become appreciated that the phase-separated structures formed by such polyelectrolyte blends, called “complex coacervates,” underlie numerous biological structures and processes essential to living systems, and there has been intense interest in understanding the unique physical features of this type of phase-separation process. In the present work, we are particularly concerned with the field responsiveness of stabilized coacervate droplets formed after the phase separation of polyelectrolyte blend solution and then exposed to deionized water, making the droplet interfacial layer acquire a viscoelastic character that strongly stabilizes it against coalescence. We show that we can precisely control the positions of individual droplets and arrays of them with relatively low-voltage electric fields (on the order of 10 V/cm) and that the imposition of an oscillatory field gives rise to chain formation with coarsening of these chains into long fibers. Such a phase-separation–like process is generally observed in electrorheological fluids of solid colloidal particles subjected to much larger field strengths. The key to these coacervates’ electrorheological properties is the altered interfacial viscoelastic properties when the droplets are introduced into deionized water and the associated high polarizability of the droplets, similar to the properties of many living cells. Since many different molecular payloads can be incorporated into these stable droplets, we anticipate many applications.

Funder

DOC | NIST | Center for Hierarchical Materials Design

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3