Protocell Flow Reactors for Enzyme and Whole‐Cell Mediated Biocatalysis

Author:

Ma Huan1,Liu Xiayi2,Nobbs Angela H.2,Mishra Ananya13,Patil Avinash J.1ORCID,Mann Stephen13ORCID

Affiliation:

1. Centre for Organized Matter Chemistry and Centre for Protolife Research School of Chemistry University of Bristol Bristol BS8 1TS UK

2. Bristol Dental School Research Laboratories University of Bristol Dorothy Hodgkin Building Bristol BS1 3NY UK

3. Max Planck‐Bristol Centre for Minimal Biology School of Chemistry University of Bristol Bristol BS8 1TS UK

Abstract

AbstractThe design and construction of continuous flow biochemical reactors comprising immobilized biocatalysts have generated great interest in the efficient synthesis of value‐added chemicals. Living cells use compartmentalization and reaction‐diffusion processes for spatiotemporal regulation of biocatalytic reactions, and implementing these strategies into continuous flow reactors can offer new opportunities in reactor design and application. Herein, the fabrication of protocell‐based continuous flow reactors for enzyme and whole‐cell mediated biocatalysis is demonstrated. Semipermeable membranized coacervate vesicles are employed as model protocells that spontaneously sequester enzymes or accumulate living bacteria to produce embodied microreactors capable of single‐ or multiple‐step catalytic reactions. By packing millions of the enzyme/bacteria‐containing coacervate vesicles in a glass column, a facile, cost‐effective, and modular methodology capable of performing oxidoreductase, peroxidase and lipolytic reactions, enzyme‐mediated L‐DOPA synthesis, and whole‐cell glycolysis under continuous flow conditions, is demonstrated. It is shown that the protocell‐nested enzymes and bacterial cells exhibit enhanced activities and stability under deleterious operating conditions compared with their non‐encapsulated counterparts. These results provide a step toward the engineering of continuous flow reactors based on cell‐like microscale agents and offer opportunities in the development of green and sustainable industrial bioprocessing.

Funder

University of Bristol

European Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3