Observation of two-step melting on a sphere

Author:

Singh Navneet1ORCID,Sood A. K.23ORCID,Ganapathy Rajesh34ORCID

Affiliation:

1. Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India

2. Department of Physics, Indian Institute of Science, Bangalore 560012, India

3. International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India

4. School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India

Abstract

Melting in two-dimensional flat space is typically two-step and via the hexatic phase. How melting proceeds on a curved surface, however, is not known. Topology mandates that crystalline particle assemblies on these surfaces harbor a finite density of defects, which itself can be ordered, like the icosahedral ordering of 5-coordinated disclination defects on a sphere. Thus, melting even on a sphere, the simplest closed surface, involves the loss of both crystalline and defect order. Probing the interplay of these two forms of order, however, requires a system in which melting can be performed in situ, and this has not been achieved hitherto. Here, by tuning interparticle interactions in situ, we report an observation of an intermediate hexatic phase during the melting of colloidal crystals on a sphere. Remarkably, we observed a precipitous drop in icosahedral defect order in the hexatic phase where the shear modulus is expected to vanish. Furthermore, unlike in flat space, where disorder can fundamentally alter the nature of the melting process, on the sphere, we observed the signature characteristics of ideal melting. Our findings have profound implications for understanding, for instance, the self-assembly and maturation dynamics of viral capsids and also phase transitions on curved surfaces.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3