Titanium dioxide - activated carbon composite for photoelectrochemical degradation of phenol

Author:

Anh L. H. Q.ORCID,Tran Uyen P. N.ORCID,Nghi P. V. G.,Le H. T.,Khuyen N. T. B.,Hai T. D.ORCID

Abstract

In this study, titanium dioxide (TiO2) and titanium dioxide – activated carbon composite (TiO2–AC) were prepared by sol-gel method for photoelectrochemical (PEC) applications. Characterization of the materials was performed by scanning electron microscope, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and diffuse reflectance spectroscopy. The results show that TiO2 was successfully loaded on activated carbon (AC), producing TiO2–AC with 2.61 eV of bandgap energy, lower than that of TiO2 (3.15 eV). Photoanodes based on TiO2 and TiO2–AC were fabricated and applied to PEC experiments for phenol degradation. In comparison with the TiO2 photoanode, the TiO2–AC one exhibited superior photocatalytic activity, which was indicated by a high current density and effective phenol removal. A mechanism of phenol PEC degradation on the TiO2–AC photoanode was proposed, which includes interaction between protonated phenol and active sites bearing oxygen on the photoanode surface. A kinetic model according to this mechanism was also established and fitted to experimental findings, resulting in rate constants of elementary reactions.

Publisher

Ural Federal University

Subject

Materials Chemistry,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3