Analysis of the repercussions of Artificial Intelligence in the Personalization of the Virtual Educational Process in Higher Education Programs

Author:

Recalde Drouet Elizabeth MagdalenaORCID,Tello Salazar David MauricioORCID,Charro Domínguez Tatiana LizbethORCID,Catota Pinthsa Pablo JordánORCID

Abstract

This study examined how artificial intelligence (AI) has transformed the personalization of the virtual educational process in higher education programs. A systematic review of literature published between 2012 and 2023 was carried out, evaluating empirical studies, reports and review articles available in academic databases such as IEEE Xplore, SpringerLink and Google Scholar. Methods discussed include intelligent tutoring systems, learning analytics, and recommendation systems. The results showed that AI significantly improved the personalization of learning. Intelligent tutoring systems provide real-time adaptive feedback, adjusting content and pacing based on students' individual needs, improving their understanding and retention. Learning analytics helps identify student behavior patterns and predict academic issues, thereby facilitating timely interventions that help improve performance. Additionally, recommender systems personalize study materials based on student preferences and progress, thereby optimizing the educational experience. However, significant challenges have been identified, such as the need to protect data privacy and mitigate algorithmic biases that can affect the fairness and efficiency of these systems. In conclusion, the integration of AI into virtual higher education has enhanced the personalization of learning, improving both student satisfaction and academic performance. However, there is a need to continue to focus on developing ethical and equitable AI systems to address identified issues and maximize educational benefits

Publisher

Salud, Ciencia y Tecnologia

Reference20 articles.

1. Baker, R. S. (2019). Challenges for the Future of Educational Data Mining: The Baker Learning Analytics Prizes. Journal of Educational Data Mining, 11(1), 1-9. https://jedm.educationaldatamining.org/index.php/JEDM/article/view/333/303

2. Baker, R. S., P. S. (2014). Educational Data Mining and Learning Analytics. In C. Romero, S. Ventura, M. Pechenizkiy, & R. S. J. D. Baker (Eds.), Handbook of educational data mining (pp. 61-74). Springer. https://doi.org/10.1007/978-1-4614-3305-7_4

3. Carillo Rodríguez, L. M., & Montenegro Cobeña, A. M. (2024). Sistemas de recomendación basados en la inteligencia artificial para evaluación educativa en la EEB Mercedes Moreno Irigoyen y la EEB Presidente Tamayo (Bachelor's thesis, La Libertad: Universidad Estatal Península de Santa Elena. 2024).

4. Cedeño, E. I. B., Quintero, A. R. T., Quiñónez, O. G. A., Zamora, M. E. P., & Prado, N. G. V. (2024). Análisis de tendencias y futuro de la Inteligencia Artificial en la Educación Superior: perspectivas y desafíos. Ciencia Latina Revista Científica Multidisciplinar, 8(1), 3061-3076.

5. Chen, L., De, R. K., & Kantor, P. B. (2013). Recommender systems handbook. Springer. https://link.springer.com/book/10.1007/978-1-4899-7637-6

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3