Correlation of pasting behaviors with total phenolic compounds and starch digestibility of indigenous pigmented rice grown in upper Northern Thailand

Author:

Ponjanta Jirapa,Chomsri Ni-orn,Meechoui Sawit

Abstract

Background: Thailand has one of the most important rice genetic resources with white, light brown, brown, red, and purple rice bran colors. The latter believed to have potential for health benefits due to their phenolic content. Recently researchers have indicated that starch digestive enzymes, including salivary and pancreatic α-amylases and α-glucosidases, can be inhibited by phenolic compounds. Although pasting properties of rice flour are key determinants of quality significantly impacting the final product texture, there is no in-depth study on their correlation with phenolic compound and starch digestibility.  Methods:  Rice flour from twelve varieties, three from each of five bran colors (white, brown, red, and purple), were evaluated for pasting properties (RVA-3D), total phenolic compounds, amylose content, resistant starch and estimated glycemic index.  Simple correlation coefficients were calculated for the relationships between pasting properties (final viscosity, breakdown, setback and pasting temperature) and total phenolic compounds, resistant starch and estimated glycemic index.Results: Within each rice variety, red and purple pigmented flours had higher total phenolic compounds (TPC) and more resistant starch than that of white flours. The TPC and resistant starch content of the flours ranged between 7.83- 47.3 mg/L and 2.44–10.50% respectively, and producing 60-80 of estimated glycemic index. Viscosity behavior showed that pigmented with low amylose rice had lower viscosity temperature than that of pigmented with high amylose rice flour, but higher in peak viscosity. Correlation coefficients of pasting temperature, final viscosity, break down and setback with TCP was observed to be inversely related to glycemic index. However, it was positively correlated to the resistant starch and amylose content. Conclusions:  Pigmented rice flour is a better source of TPC and resistant starch which in turn provides low glycemic index. This could help reduce the onset of type 2 diabetes and other related chronic diseases. In addition, this study provides impact of pasting behavior – TPC- resistant starch of rice flour relationships, which have important implication for utilization in food industry.Keywords: total phenolic compounds, amylose content, resistant starch, glycemic index

Publisher

Functional Food Center

Subject

Nutrition and Dietetics,Biochemistry,Medicine (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3