The green tea polyphenol EGCG is differentially associated with telomeric regulation in normal human fibroblasts versus cancer cells

Author:

Pointner Angelika,Mölzer Christine,Magnet Ulrich,Zappe Katja,Hippe Berit,Tosevska Anela,Tomeva Elena,Dum Elisabeth,Gessner Diana,Lilja Stephanie,Switzeny Olivier Jerome,Krammer Ulrike,Haslberger Alexander

Abstract

Introduction: Topical investigations have demonstrated that oxidative stress and inflammation play key roles in biological aging and determine incidence and course of age-related diseases. Lifestyle and environmental factors hugely impact epigenetic regulation and DNA stability with telomere attrition and epigenetic instability providing a potential record of the cumulative burden of endogenous and exogenous oxidative noxae. Certain physiologically active plant components exhibit antioxidative activities affecting epigenetic regulation of inflammation response and DNA repair.Methods: Against this background, the present study investigated green tea polyphenol epigallocatechin gallate (EGCG) in the context of telomere regulation in Caco-2 colorectal adenocarcinoma cells vs. ES-1 primary skin fibroblasts. Cell lines were treated with 20 and 200 µM EGCG for 36, 72 and 144 hours, respectively. Telomerase activity, relative telomere length as well as methylation status of hTERT and c-Myc from different culture conditions were assessed. Malondialdehyde (MDA) served as a surrogate marker of potential pro-oxidative effects of EGCG in a physiologically relevant tissue model.Results: EGCG incubation was associated with telomere shortening and decreased telomerase activity in Caco-2 cells, and relatively longer telomeres along with increased methylation of six 5'—C—phosphate—G—3' (CpG) sites in the promoter region of human Telomerase Reverse Transcriptase (hTERT) in fibroblasts. At low concentrations, EGCG significantly decreased oxidative damage to lipids in Caco-2 cells and attenuated H2O2 induced oxidation at higher concentrations.Conclusion: These results suggest differential EGCG-mediated telomeric modulation in cancer vs. primary cells and a specific antioxidant activity of EGCG against oxidative damage to lipids in abnormal cells.Keywords: Caco-2, epigallocatechin gallate, telomeres, hTERT, DNA methylation, telomerase, oxidative stress, malondialdehyde

Publisher

Functional Food Center

Subject

Nutrition and Dietetics,Biochemistry,Medicine (miscellaneous),Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3