Response of contrasting bread wheat genotypes for heat and drought stress tolerance for rhizospheric soil properties

Author:

Ahlawat O.P., ,Chugh T.,Venkatesh K.,Tiwari R.,Sharma P.,Sheoran S.,Singh R.,Mamrutha H.M.,Arora N.K.,Singh G.,Singh G.P., , , , , , , , , ,

Abstract

Aim: The study aimed at investigating differential response of contrasting bread wheat genotypes for heat and drought stress towards changes in chemical and microbial components of rhizospheric soil for developing climate resilient wheat varieties. Methodology: Rhizospheric soils were studied for changes in pH, electrical conductivity, cations, anions, micro-elements, major-elements, organic carbon and organic matter, and plant growth promoting rhizobacteria(PGPRs) abundance at booting and anthesis stages of growth in four contrasting genotypes during 2017-18 and 2018-19 crop seasons Results: The contrasting genotypes (HD2967 and WH730) for heat tolerance exhibited significant interaction between genotype and stage of growth for Na+, K+ and nitrogen, while genotypes (HUW468 and C306) for drought tolerance exhibited it for available nitrogen only. Significant difference for Ca2+, Mg2+, iron, manganese, nitrogen and potassium levels were recorded in drought stress related genotypes at two stages of growth. The heat tolerant genotype showed 2.54 and 10.67 folds enhancement in population of N2 fixing and spore forming bacteria at anthesis compared to sensitive genotypes, while drought tolerant genotype showed 1.51, 1.07 and 6.26 folds in P-solubilizing, N2 fixing and general bacterial abundance. Interpretation: Contrasting genotypes for heat and drought stresses responded differently for chemical properties and abundance of PGPRs in rhizospheric soils.

Publisher

Triveni Enterprises

Subject

Health, Toxicology and Mutagenesis,Toxicology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3