Abstract
The traditional Poisson regression model for fitting count data is considered inadequate to fit over-or under-dispersed count data and new models have been developed to make up for such inadequacies inherent in the model. In this study, Bayesian Multi-level model was proposed using the No-U-Turn Sampler (NUTS) sampler to sample from the posterior distribution. A simulation was carried out for both over-and under-dispersed data from discrete Weibull distribution. Pareto k diagnostics was implemented, and the result showed that under-dispersed and over-dispersed simulated data has all its k value to be less than 0.5, which indicate that all the observations are good. Also all WAIC were the same as LOO-IC except for Poisson in the over-dispersed simulated data. Real-life data set from National Health Insurance Scheme (NHIS) was used for further analysis. Seven multi-level models were f itted and the Geometric model outperformed other model.
Publisher
Nigerian Society of Physical Sciences
Subject
General Physics and Astronomy,General Mathematics,General Chemistry
Reference33 articles.
1. M. S. Workie & A. M. Lakew, “Bayesian count regression analysis for determinants of antenatal care service visits among pregnant women in Amhara regional state, Ethiopia” Journal of Big Data 5 (2018) https://doi.org/10.1186/s40537-018-0117-8.
2. K.H.Lee,B.ACoull,A.B.Moscicki,B.J.Paster&J.R.Starr, “Bayesian Variable Selection for Multivariate Zero-Inflated Models: Application to Microbiome Count Data”, Biostatistics 21 (2020) 499. 1.
3. F. Famoye & K.P. Singh, “Zero-inflated generalized Poisson regression model with applications to domestic violence data”, Journal of Data Science 4 (2006) 117.
4. O. S. Adesina, T. O. Olatayo, O. O. Agboola, & P. E. Oguntunde, “Bayesian Dirichlet process mixture prior for count data”, International Journal of Mechanical Engineering and Technology 9 (2018) 630.
5. D. Lambert, “Zero-inflated Poisson regression, with an application to defects in manufacturing” Technometrics 34 (1992) .
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献