Magnetic Resonance Imaging (MRI) Brain Tumor Image Classification Based on Five Machine Learning Algorithms

Author:

Song Jiang ,Yuan Gu ,Ela Kumar

Abstract

With the emergence of new technologies, vast amounts of data have become pervasive in various aspects of social life, including public transportation, community services, and scientific research. As the population ages, healthcare has become increasingly crucial, and reducing the public burdens, especially in hospitals, has become an urgent issue. For instance, manually managing vast electronic medical files, such as MRI images, based on their types is practically impossible. However, accurate classification is fundamental and critical for subsequent tasks, such as diagnosis. In this article, we utilized machine learning techniques to classify MRI brain tumor images. We employed a range of machine learning models, including k-Nearest Neighbors (k-NN), decision tree, Support Vector Machine (SVM), logistic regression, and Stochastic Gradient Descent (SGD). The performance of each model type was measured by True Skill Statistics (TSS), based on the results obtained from the confusion matrix. The results showed that k-NN works most efficiently among all those classification models. However, due to the constraints of limited running time and computational power, further investigation of the models and parameter optimization are necessary for future work.

Publisher

Universal Wiser Publisher Pte. Ltd

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3