The East Sea (Japan Sea) in Change: A Story of Dissolved Oxygen

Author:

Kim Kyung-Ryul,Kim Kuh,Kang Dong-Jin,Park Sun Young,Park Mi-Kyung,Kim Young-Gyu,Min Hong Sik,Min Dongha

Abstract

Dissolved oxygen (DO) is one of the most important oceanographic parameters measured for understanding various physicochemical processes in the ocean. This situation has been particularly true for the East Sea study ever since the first extensive investigation in the area during the 1930s (<xref ref-type="bibr" rid="bib23">Uda, 1934</xref>). Uda found very high and uniform concentrations of DO, around 250 µM (5.6 ml/l), for waters below a few hundred meters over entire basins, and assumed that a very fast ventilation system was operating in the East Sea. The Circulation Research of the East Asian Marginal Seas (CREAMS), Japan-Korea-Russia international cooperative studies on the East Sea have provided a unique opportunity to investigate the entire East Sea for the first time since Uda’s study. A spectrophotometrically modified Winkler method (<xref ref-type="bibr" rid="bib16">Pai et al., 1993</xref>) and a DO sensor (Sea Bird Model SBE 13) were tested successfully during the CREAMS studies for improving the precision and accuracy of DO measurement. The study further confirmed an earlier observation by <xref ref-type="bibr" rid="bib7">Gamo et al. (1986)</xref> that DO structures in the East Sea have been changing drastically in such a way that the DO minimum depths have deepened by more than 1000 meters during the last 30 years. While the causes for these changes are not known at the present time, the analysis of DO profiles strongly suggests that the mode of deep water ventilation system in the East Sea has shifted from bottom water formation in the past to intermediate water formation at the present time (<xref ref-type="bibr" rid="bib8">Kim and Kim, 1996</xref>). Studies of precise and accurate DO monitoring, along with other chemical tracers, deserve the highest priority for future research in the East Sea.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3