The Contribution of Small Phytoplankton Communities to the Total Dissolved Inorganic Nitrogen Assimilation Rates in the East/Japan Sea: An Experimental Evaluation

Author:

Bhavya Panthalil S.,Kang Jae Joong,Jang Hyo Keun,Joo HuiTae,Lee Jae Hyung,Lee Jang Han,Park Jung Woo,Kim Kwanwoo,Kim Hyung Chul,Lee Sang HeonORCID

Abstract

As a part of Korean-Russian joint expeditions in the East/Japan Sea during 2012 and 2015, a set of total and small (<2 μm) phytoplankton NO3− and NH4+ uptake rate estimations were carried out. The study aimed to assess the spatio-temporal variations in dissolved inorganic nitrogen (DIN) assimilation by the total and small phytoplankton. The results show that the total NO3− uptake rates during 2012 varied between 0.001 and 0.150 μmol NL−1h−1 (mean ± SD = 0.034 ± 0.033) and that the total NH4+ uptake rates ranged between 0.002 and 0.707 μmol NL−1h−1 (mean ± SD = 0.200 ± 0.158). The total uptake rates during 2015 were ranged from 0.003 to 0.530 (mean ± S.D. = 0.117 ± 0.120 μmol NL−1h−1) for NO3− and from 0.008 to 1.17 (mean ± S.D. = 0.199 ± 0.266 NL−1h−1) for NH4+. The small phytoplankton NO3− and NH4+ uptake rates during 2015 ranged between 0.001 and 0.164 (mean ± S.D. = 0.033 ± 0.036) μmol NL−1h−1 and 0.010–0.304 (mean ± S.D. = 0.101 ± 0.073) μmol NL−1h−1, respectively. Small phytoplankton’s contribution to the total depth-integrated NO3− and NH4+ uptake rates ranged from 10.24 to 59.36% and from 30.21 to 68.55%, respectively. The significant negative relationship observed between the depth-integrated total NO3− and NH4+ uptake rates and small phytoplankton contributions indicates a possible decline in the DIN assimilation rates under small phytoplankton dominance. The results from the present study highlight the possibility of a reduction in the total DIN assimilation process in the East/Japan Sea when small phytoplankton dominate under strong thermal stratification due to sea surface warming. The present study’s findings agree with the model projections, which suggested a decline in primary production in the global warming scenario.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3