Affiliation:
1. Indiana University
2. Amazon
3. Michigan State University
4. Oregon State University
Abstract
Empirical Bayes’s (EB) estimation has become a popular procedure used to calculate teacher value added, often as a way to make imprecise estimates more reliable. In this article, we review the theory of EB estimation and use simulated and real student achievement data to study the ability of EB estimators to properly rank teachers. We compare the performance of EB estimators with that of other widely used value-added estimators under different teacher assignment scenarios. We find that, although EB estimators generally perform well under random assignment (RA) of teachers to classrooms, their performance suffers under nonrandom teacher assignment. Under non-RA, estimators that explicitly (if imperfectly) control for the teacher assignment mechanism perform the best out of all the estimators we examine. We also find that shrinking the estimates, as in EB estimation, does not itself substantially boost performance.
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献