Nonparametric Classification Method for Multiple-Choice Items in Cognitive Diagnosis

Author:

Wang Yu1,Chiu Chia-Yi1,Köhn Hans Friedrich2

Affiliation:

1. University of Minnesota

2. University of Illinois at Urbana-Champaign

Abstract

The multiple-choice (MC) item format has been widely used in educational assessments across diverse content domains. MC items purportedly allow for collecting richer diagnostic information. The effectiveness and economy of administering MC items may have further contributed to their popularity not just in educational assessment. The MC item format has also been adapted to the cognitive diagnosis (CD) framework. Early approaches simply dichotomized the responses and analyzed them with a CD model for binary responses. Obviously, this strategy cannot exploit the additional diagnostic information provided by MC items. De la Torre’s MC Deterministic Inputs, Noisy “And” Gate (MC-DINA) model was the first for the explicit analysis of items having MC response format. However, as a drawback, the attribute vectors of the distractors are restricted to be nested within the key and each other. The method presented in this article for the CD of DINA items having MC response format does not require such constraints. Another contribution of the proposed method concerns its implementation using a nonparametric classification algorithm, which predestines it for use especially in small-sample settings like classrooms, where CD is most needed for monitoring instruction and student learning. In contrast, default parametric CD estimation routines that rely on EM- or MCMC-based algorithms cannot guarantee stable and reliable estimates—despite their effectiveness and efficiency when samples are large—due to computational feasibility issues caused by insufficient sample sizes. Results of simulation studies and a real-world application are also reported.

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3