Supervised diagnostic classification of cognitive attributes using data augmentation

Author:

Yoon Ji-YoungORCID,Gweon Gahgene,Yoo Yun JooORCID

Abstract

Over recent decades, machine learning, an integral subfield of artificial intelligence, has revolutionized diverse sectors, enabling data-driven decisions with minimal human intervention. In particular, the field of educational assessment emerges as a promising area for machine learning applications, where students can be classified and diagnosed using their performance data. The objectives of Diagnostic Classification Models (DCMs), which provide a suite of methods for diagnosing students’ cognitive states in relation to the mastery of necessary cognitive attributes for solving problems in a test, can be effectively addressed through machine learning techniques. However, the challenge lies in the latent nature of cognitive status, which makes it difficult to obtain labels for the training dataset. Consequently, the application of machine learning methods to DCMs often assumes smaller training sets with labels derived either from theoretical considerations or human experts. In this study, the authors propose a supervised diagnostic classification model with data augmentation (SDCM-DA). This method is designed to utilize the augmented data using a data generation model constructed by leveraging the probability of correct responses for each attribute mastery pattern derived from the expert-labeled dataset. To explore the benefits of data augmentation, a simulation study is carried out, contrasting it with classification methods that rely solely on the expert-labeled dataset for training. The findings reveal that utilizing data augmentation with the estimated probabilities of correct responses substantially enhances classification accuracy. This holds true even when the augmentation originates from a small labeled sample with occasional labeling errors, and when the tests contain lower-quality items that may inaccurately measure students’ true cognitive status. Moreover, the study demonstrates that leveraging augmented data for learning can enable the successful classification of students, thereby eliminating the necessity for specifying an underlying response model.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference65 articles.

1. Jumping NLP curves: A review of natural language processing research;E Cambria;IEEE Computational Intelligence Magazine,2014

2. Deep Learning for Computer Vision: A Brief Review;A Voulodimos;Computational Intelligence and Neuroscience,2018

3. Defining and evaluating models of cognition used in educational measurement to make inferences about examinees’ thinking processes;JP Leighton;Educational Measurement: Issues and Practice,2007

4. Gdina: An R package for cognitive diagnosis modeling;W Ma;Journal of Statistical Software,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3