A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models

Author:

Patz Richard J.1,Junker Brian W.2

Affiliation:

1. CTB/McGraw-Hill

2. Carnegie Mellon University

Abstract

This paper demonstrates Markov chain Monte Carlo (MCMC) techniques that are particularly well-suited to complex models with item response theory (IRT) assumptions. MCMC may be thought of as a successor to the standard practice of first calibrating the items using E-M methods and then taking the item parameters to be known and fixed at their calibrated values when proceeding with inference regarding the latent trait, in contrast to this two-stage E-M approach, MCMC methods treat item and subject parameters at the same time; this allows us to incorporate standard errors of item estimates into trait inferences, and vice versa. We develop a MCMC methodology, based on Metropolis-Hastings sampling, that can be routinely implemented to fit novel IRT models, and we compare the algorithmic features of the Metropolis- Hastings approach to other approaches based on Gibbs sampling. For concreteness we illustrate the methodology using the familiar two-parameter logistic (2PL) IRT model; more complex models are treated in a subsequent paper (Patz & Junker, in press).

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3