Tones from a Narrowing Race: Polling and Online Political Communication during the 2014 Scottish Referendum Campaign

Author:

Brie Evelyne,Dufresne Yannick

Abstract

The use of negative political communication is a predominant characteristic of modern politics. However, literature doesn't provide an answer to the following question: what explains fluctuations in the use of negative messages within political organisations during a given political campaign? The present paper examines this question in the context of the 2014 Scottish independence referendum. Data consists of all tweets distributed by the official Twitter account of both campaign organisations (@YesScotland and @UK_Together) between June 16, 2014 and September 17, 2014. Results are obtained by a non-parametric local regression and by time-series regression analyses. Our model demonstrates that having an advance in the polls had a statistically significant influence on the tweet sentiment of at least one organisation during the referendum campaign: Better Together's messages were more negative when it was ahead in the polls. Meanwhile, Yes Scotland's messages were more negative after each of the leaders' debates.

Publisher

Cambridge University Press (CUP)

Subject

Sociology and Political Science

Reference57 articles.

1. Jürgens, P. , Jungherr, A. , and Schoen, H. . 2011. Small Worlds with a Difference: New Gatekeepers and the Filtering of Political Information on Twitter. Proceedings of the 3rd International Web Science Conference, 21.

2. Carrell, S. , and Brooks, L. . 2014. Scottish Independence: Salmond Scores Victory over Darling in Fractious Debate. Available from www.theguardian.com/ politics/2014/aug/25/scottish-independence-debate-alex-salmond-alistair-darling, accessed 5 August 2015.

3. Negative information weighs more heavily on the brain: The negativity bias in evaluative categorizations.

4. Kanayama, H. , and Nasukawa, T. . 2006. Fully Automatic Lexicon Expansion for Domain-Oriented Sentiment Analysis. Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, 355–63.

5. Putting the fear back into fear appeals: The extended parallel process model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3