Author:
Casacuberta Núria,Castrillejo Maxi,Wefing Anne-Marie,Bollhalder Silvia,Wacker Lukas
Abstract
ABSTRACTA new method to extract CO2 in seawater samples for the determination of F14C has been developed in the Laboratory of Ion Beam Physics at ETH Zurich. The setup consists of an automated sampler designed to extract dissolved inorganic carbon (DIC) from 7 samples in a row, by flushing the seawater with He gas to extract CO2. The fully automated method is controlled via a LabVIEW program that runs through all consecutive steps: catalyst preconditioning, CO2 extraction, CO2 trapping, thermal CO2 release from the trap into the reactor and finally the graphitization reaction which is performed simultaneously in the 7 reactors. The method was optimized by introducing a Cu-Ag furnace that was placed between the water and zeolite traps, which resulted in a better and faster graphitization performance (<2 hr) compared to previously used techniques. The method showed to be reproducible with an unprecedented precision of 1.7‰ even though consuming only 50–60 mL of seawater. The high throughput of 21 samples per day allows for coverage of future oceanographic transects with high spatial resolution, thus fostering the use of radiocarbon (14C) as water mass tracer.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Archaeology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献